Investigacion. Ondas Sismicas.
Dado que la Tierra o cualquier otro cuerpo planetario puede ser considerado como un objeto elástico es un medio adecuado para la propagación de ondas. Una perturbación como un terremoto en cualquier punto de la Tierra, produce ondas energéticas conocidas como ondas sísmicas. La onda sísmica deforma el terreno a través del cual pasa, lo cual indica que puede hacer trabajo, y, por lo tanto, corresponde a energía elástica que se desplaza. En el caso de ondas generadas por explosiones, la energía es producto de las reacciones químicas o nucleares que causaron la explosión; en el caso de ondas generadas por sismos, es la que estaba almacenada como energía de deformación en las rocas.
Algo similar ocurre con los terremotos: al romperse la roca se generan ondas que se propagan a través de la Tierra, tanto en su interior como por su superficie. Básicamente hay tres tipos de ondas. El primero de ellos, llamado ondas P, consiste en la transmisión de compresiones y rarefacciones de la roca, de forma similar a la propagación del sonido. Ésta es la más veloz de todas las ondas sísmicas (más de 5 km/s en las rocas graníticas cercanas a la superficie, y alcanza más de 11 km/s en el interior de la Tierra) y, por lo tanto, es la primera en llegar a cualquier punto, en ser sentida y en ser registrada en los sismogramas, por lo que se llamó onda Primera o Primaria y de allí el nombre de P (en inglés se asocia también con push que significa empujón o empujar).
El segundo tipo, u ondas S, consiste en la propagación de ondas de cizalla, donde las partículas se mueven en dirección perpendicular a la dirección de propagación de la perturbación. La onda S es más lenta que la onda P. En una amplia gama de rocas su velocidad, Vs, es aproximadamente igual a la velocidad de la onda P, Vp, dividida entre (esto es conocido como condición de Poisson). Como la onda S es la segunda en llegar se le llamó Secundaria, y de allí su nombre (en inglés se asocia con shake, que significa sacudir). Como los líquidos no pueden soportar esfuerzos cortantes, las ondas S no se propagan a través de ellos. El desplazamiento de las partículas en el terreno durante el paso de la onda puede ser en cualquier dirección perpendícular a la de propagación; pero, a veces, pueden desplazarse en una sola dirección, en cuyo caso se dice que las ondas están polarizadas. La componente vertical de la onda S se denota a menudo por SV, mientras que la componente horizontal se denota por SH.
Estos dos tipos de ondas se pueden propagar por el interior de la Tierra.
El segundo tipo, u ondas S, consiste en la propagación de ondas de cizalla, donde las partículas se mueven en dirección perpendicular a la dirección de propagación de la perturbación. La onda S es más lenta que la onda P. En una amplia gama de rocas su velocidad, Vs, es aproximadamente igual a la velocidad de la onda P, Vp, dividida entre (esto es conocido como condición de Poisson). Como la onda S es la segunda en llegar se le llamó Secundaria, y de allí su nombre (en inglés se asocia con shake, que significa sacudir). Como los líquidos no pueden soportar esfuerzos cortantes, las ondas S no se propagan a través de ellos. El desplazamiento de las partículas en el terreno durante el paso de la onda puede ser en cualquier dirección perpendícular a la de propagación; pero, a veces, pueden desplazarse en una sola dirección, en cuyo caso se dice que las ondas están polarizadas. La componente vertical de la onda S se denota a menudo por SV, mientras que la componente horizontal se denota por SH.
Estos dos tipos de ondas se pueden propagar por el interior de la Tierra.
Las ondas P en el aire son simplemente ondas sonoras y la velocidad del sonido es sobre 340 m/s a temperatura ordinaria. El agua puede soportar ondas P, pero no ondas S. La velocidad de estas ondas P (velocidad del sonido) en agua es unos 1450 m/s. Las ondas P, dependen del módulo de bulk de elasticidad del material, así como de su densidad. La velocidad de onda en un material sólido como el granito, puede ser unos 5000 m/s. Las ondas P de los terremotos llegan primero, pero debido a sus pequeñas amplitudes, no producen tanto daño como las ondas S y las ondas superficiales que le siguen.
Las ondas S son ondas transversales que implican movimiento de tierra perpendicular a la velocidad de propagación. Viajan sólo a través de los sólidos, y la ausencia de ondas S detectadas a grandes distancias de los terremotos, fue el primer indicio de que la Tierra tiene un núcleo líquido. Las ondas S viajan típicamente al 60% de la velocidad de las ondas P. Suelen ser más perjudiciales que las ondas P, ya que son varias veces superiores en amplitud.
Existe un tercer tipo de ondas, llamadas superficiales debido a que solo se propagan por las capas más superficiales de la Tierra, decreciendo su amplitud con la profundidad. Dentro de este tipo de ondas se pueden diferenciar dos modalidades, denominadas ondas Rayleigh y ondas Love en honor a los científicos que demostraron teóricamente su existencia.
Las ondas Rayleigh se forman en la superficie de la Tierra y hacen que las partículas se desplacen según una trayectoria elíptica retrógrada. En cambio las ondas Love se originan en la interfase de dos medios con propiedades mecánicas diferentes; en este caso el movimiento de las partículas es perpendicular a la dirección de propagación de la perturbación, similar a las ondas S, pero solo ocurre en el plano de la superficie terrestre.
Son las ondas más lentas con velocidades de grupo (la velocidad con que viaja la energía) que van de 1 a 4 km/s, según se muestra en la figura 25 (a), que muestra varias curvas que corresponden a diversos modos de propagación de la onda de Rayleigh; donde cadamodo propio, modo fundamental o eigenmodo es una forma en la cual puede vibrar el terreno de manera que se logre la interferencia constructiva que da lugar a las ondas superficiales.
Las ondas Love son las denotadas usualmente por L, o G o LQ si son de periodo muy largo. Se comportan de manera muy parecida a la descrita para las ondas de Rayleigh, pero se deben a interferencia constructiva de ondas SH solamente, por lo que no pueden existir en un semiespacio, sino que requieren al menos una capa sobre un semiespacio, donde pueda quedar atrapada parte de la energía sísmica. Son polarizadas horizontalmente (como las SH) y, por lo tanto, no se registran en los sensores verticales.
Aunque más lentas que las ondas de cuerpo, las ondas de Love tienen velocidades de 1 a 4.5 km/s son más veloces que las de Rayleigh, como se muestra en la figura 24. La figura 25 (b) muestra las curvas de dispersión de grupo para varios modos propios de las ondas de Love. Podemos ver que, igual que con las ondas de Rayleigh, cada modo tiene una velocidad tope, y también existe una frecuencia tope por debajo de la cual no puede vibrar cada uno de los modos superiores.
Debido a la diferencia en la velocidad de cada tipo de onda, cuando sentimos un terremoto las primeras sacudidas son debidas a las ondas P, siendo las siguientes las ondas S y por último las ondas superficiales. La diferente velocidad de cada tipo de onda es, además, la propiedad que se utiliza para determinar la localización del foco del terremoto.
Un caso especial de ondas son las que se originan cuando el foco sitúa bajo el mar. Este caso es muy similar al ejemplo de la piedra que cae en un estanque: se generan grandes olas, que se propagan desde el foco hacia la costa, donde causan graves daños. Son los maremotos. Quizás el ejemplo más tristemente conocido sea el terremoto que se produjo en 1755, en el océano Atlántico: las olas alcanzaron la costa de Portugal, causando gran número de víctimas. Afortunadamente este tipo de olas son poco frecuentes, requieren que el mar sea suficientemente profundo y el terremoto que los origina sea de gran tamaño.
Velocidad de las Ondas
Se puede demostrar teóricamente y se observa experimentalmente que la velocidad de las ondas es tal que: VR,L < Vs < Vp. Donde Vp, Vs y VR,L son las velocidades de las ondas P, S y de Rayleigh y Love respectivamente. Entre estas dos últimas no puede establecerse un orden de velocidades porque esta depende de muchos factores y no siempre viajan con la misma velocidad.
Las velocidades de las diferentes ondas dependen de las características del medio; por ejemplo, en rocas ígneas la velocidad de las ondas P es del orden de 6 Km/s, mientras que en rocas poco consolidadas es de aproximadamente 2 Km/s o menor.
La secuencia típica de un terremoto es: primero el arribo de un ruido sordo causado por las ondas("P"), luego las ondas ("S") y finalmente el "retumbar" de la tierra causado por las ondas superficiales.
Comentarios
Publicar un comentario